Oscillation and the mean ergodic theorem for uniformly convex Banach spaces

نویسندگان

  • Jeremy Avigad
  • Jason Rute
  • JEREMY AVIGAD
چکیده

Let B be a p-uniformly convex Banach space, with p ≥ 2. Let T be a linear operator on B, and let Anx denote the ergodic average 1 n i<n T n x. We prove the following variational inequality in the case where T is power bounded from above and below: for any increasing sequence (t k) k∈N of natural numbers we have k At k+1 x − At k x p ≤ Cx p , where the constant C depends only on p and the modulus of uniform convexity. For T a nonexpansive operator, we obtain a weaker bound on the number of ε-fluctuations in the sequence. We clarify the relationship between bounds on the number of ε-fluctuations in a sequence and bounds on the rate of metastability, and provide lower bounds on the rate of metastability that show that our main result is sharp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative Mean Ergodic Theorem for uniformly convex Banach spaces

We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [1] and T. Tao [11].

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

Strong convergence theorem for finite family of m-accretive operators in Banach spaces

The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.

متن کامل

On the Strong Ergodic Theorem for Commutative Semigroups of Non-lipschitzian Mappings in Banach Spaces

Let C be a bounded closed convex subset of a uniformly convex Banach space X and let = = {T (t) : t ∈ G} be a commutative semigroup of asymptotically nonexpansive in the intermediate mapping from C into itself. In this paper, we provide the strong mean ergodic convergence theorem for the almost-orbit of =.

متن کامل

Convergence results‎: ‎A new type iteration scheme for two asymptotically nonexpansive mappings in uniformly convex Banach spaces

‎In this article‎, ‎we introduce a new type iterative scheme for‎ ‎approximating common fixed points of two asymptotically‎ ‎nonexpansive mappings is defined‎, ‎and weak and strong convergence‎ ‎theorem are proved for the new iterative scheme in a uniformly‎ ‎convex Banach space‎. ‎The results obtained in this article‎ ‎represent an extension as well as refinement of previous known‎ ‎resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016